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(a) BAL Dataset. From left to right: 10155, 1934, and 392 camera frames.

(b) Replica Dataset. All three cases have 2000 camera frames.

(c) Mip-Nerf Dataset (left: reconstruction, right: novel view synthesis). 185 camera frames.

(d) IMC Dataset. From left to right: 3765, 2063, and 904 camera frames.

Left (e) TUM Dataset (798 and 613 camera frames); Right (f) C3VD Dataset (370 and 613 camera frames);
Fig. 1: Faster, scalable, and initialization-free 3D reconstruction powered by conveX bundle adjustMent (XM).

Abstract—Global bundle adjustment is made easy by depth
prediction and convex optimization. We (i) propose a scaled
bundle adjustment (SBA) formulation that lifts 2D keypoint
measurements to 3D with learned depth, (ii) design an empirically
tight convex semidefinite program (SDP) relaxation that solves

SBA to certifiable global optimality, (iii) solve the SDP relax-
ations at extreme scale with Burer-Monteiro factorization and
a CUDA-based trust-region Riemannian optimizer (dubbed XM),
(iv) build a structure from motion (SfM) pipeline with XM as the
optimization engine and show that XM-SfM dominates or compares
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favorably with existing SfM pipelines in terms of reconstruction
quality while being faster, more scalable, and initialization-free.

I. INTRODUCTION

At the heart of modern structure from motion (SfM) and
simultaneous localization and mapping (SLAM) sits bundle
adjustment (BA), the procedure of reconstructing camera poses
and 3D landmarks from 2D image keypoints.

Classical BA formulation. Consider a so-called view graph
illustrated in Fig. 2 with two types of nodes: 3D points pk ∈
R3, k = 1, . . . ,M and camera poses (Ri, ti) ∈ SE(3), i =
1, . . . , N . The set of edges E contains visibility information.
An edge (i, k) ∈ E indicates the k-th 3D point is visible to
the i-th camera, and a 2D keypoint measurement uik ∈ R2

has been obtained regarding the projection of the point onto
the camera frame.1 The bundle adjustment problem consists
of estimating points and poses (i.e., pk’s and (Ri, ti)’s on the
nodes) using the 2D keypoint measurements (i.e., uik’s on the
edges). This is often formulated as an optimization problem:

min
pk∈R3,k=1,...,M

(Ri,ti)∈SE(3),i=1,...,N

∑
(i,k)∈E

∥uik − π(Ripk + ti)∥2 , (1)

where Ripk + ti transforms the point pk to the i-th camera
frame, π(v) := [v1; v2]/v3 divides the first two coordinates
by the depth and projects the 3D point to 2D, and the
sum of squared errors evaluates how well the reprojected 2D
points agree with the measurements uik for all (i, k) ∈ E .
Problem (1) assumes the availability of a view graph, which
is often obtained through feature detection and matching in
SfM and SLAM pipelines (to be detailed in §IV). An important
observation is that problem (1) can only be solved up to scale.
This is because π(Ripk + ti) ≡ π(Ri(αpk) + (αti)) for any
scalar α > 0, i.e., scaling the points and translations by a factor
of α does not change the objective value of problem (1).

Optimization challenges. Problem (1) is intuitive to formu-
late but extremely difficult to optimize. The difficulty comes
from two challenges. First, problem (1) is highly nonconvex.
The nonconvexity comes from both the nonconvex feasible
set SE(3) and the nonconvex objective function due to the 2D
reprojection function π(·). Second, problem (1) can have an
extremely large scale. Both the number of camera poses N
and the number of points M can range from hundreds to tens
of thousands (cf. examples in Fig. 1). Due to these challenges,
BA solvers such as CERES [3] and GTSAM [17] require
good initializations and can easily get stuck in poor local
minima (cf. §V-A). To address this, the popular SfM pipeline
COLMAP [31] employs an incremental strategy which starts by
reconstructing only two views (i.e., (1) with N = 2) and then
sequentially registers additional camera images and associated
3D structure. Incremental SfM ensures stable initialization but
makes the pipeline slow and hard to scale to large datasets (cf.
§V where COLMAP requires several hours runtime). The recent
global SfM pipeline GLOMAP [27] replaces the incremental

1We consider BA with calibrated cameras, i.e., uik has been normalized
by camera intrinsics.
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Fig. 2: A view graph for the bundle adjustment formulation (1).
We propose a scaled bundle adjustment formulation (3) by
lifting the 2D keypoints to 3D with learned depth.

process with rotation averaging and global positioning, but
such initialization can be time-consuming (see §V).

Therefore, the motivating question of this paper is:
Can we design an algorithm that solves the global bundle

adjustment problem (1) without initialization and at scale?
BA with learned depth. We start by designing an approx-

imate formulation to problem (1) that is simpler to optimize.
The key insight is to lift the 2D keypoints uik to approximate
(and noisy) 3D keypoints leveraging large-scale pretrained
monocular depth prediction models, such as [29, 38, 10].
Formally, let dik > 0 be the predicted depth of the 2D keypoint
uik, we generate a 3D keypoint measurement

ũik = dik

[
uik

1

]
, ∀(i, k) ∈ E . (2)

However, it is well known that when using pretrained depth
prediction models, for each image, there is a global scaling and
offset to the predicted depth, i.e., the true depth for keypoint
uik should be “sidik + oi” for some unknown scaling si
and offset oi [18]. We ignore the offset oi but estimate the
per-frame scaling si,2 leading to the following scaled bundle
adjustment (SBA) formulation

min
pk∈R3,k=1,...,M
si>0,i=1,...,N

(Ri,ti)∈SE(3),i=1,...,N

∑
(i,k)∈E

∥Ri(siũik) + ti − pk∥2 , (3)

where si scales the predicted 3D keypoint ũik in (2), (Ri, ti)
transforms the scaled 3D keypoint to the global frame,3 and the
sum of squared errors in the objective computes 3D distances
to the landmarks pk without the reprojection π(·).

Remark 1 (Connection to Other Perception Problems). It is
worth noting that (i) without the per-frame scaling, prob-
lem (3) recovers the multiple point cloud registration prob-
lem [15, 23]; (ii) when N = 2 (two frames), problem (3)
reduces to (scaled) point cloud registration [22, 37].

2The rationale for this is twofold. First, we use the model’s metric depth
prediction which should match the true depth when the model is perfectly
trained. Second, estimating the scale leaves room to use optimization to fix
imperfect predictions due to, e.g., out of distribution images.

3Although we used the same notation (Ri, ti) in both problems (1) and (3),
the two transformations are inverse to each other. (Ri, ti) in (1) transforms
landmarks from global frame to camera frame, while (Ri, ti) in (3) transforms
landmarks from camera frame to global frame.



Through depth prediction, we removed the reprojection
function π(·) from (1) and resolved one challenge. However,
nonconvexity and large scale remain in problem (3).

Contributions. First, we show the nonconvexity of prob-
lem (3) is “benign”. Our strategy is to first rewrite (3) as a
quadratically constrained quadratic program (QCQP), and then
design a convex semidefinite program (SDP) relaxation, in the
same spirit of a growing family of SDP-enabled certifiable
algorithms [36, 30, 41, 24, 6]. We show the SDP relaxation
is empirically tight, i.e., globally optimal solutions of the
nonconvex (3) can be computed from the convex SDP relax-
ation with optimality certificates. Second, we show the convex
SDP relaxations can be solved at extreme scale and speed—
faster and more scalable than even the best local solvers
such as CERES. The enabling technique is to exploit the low-
rankness of (tight) SDP optimal solutions via Burer-Monteiro
(BM) factorization [13] and solve the resulting Riemannian
optimization using a trust-region algorithm [11]. For the first
time, we implemented the trust-region Riemannian optimizer
directly in C++/CUDA and show the GPU implementation
is up to 100 times faster than the state-of-the-art MANOPT
package [12] and can solve extreme-scale problems beyond
the reach of MANOPT (e.g., N > 10, 000 camera frames,
see Fig. 1). We name our GPU solver XM (conveX bundle
adjustMent). Third, we build a full SfM pipeline with XM as the
optimization engine and various techniques from prior work,
such as feature matching from COLMAP, view graph creation
from GLOMAP, CERES refinement (i.e., use the solutions
of XM to warmstart CERES for solving (1)), and outlier-
robust estimation schemes [4]. We test XM-SfM across six
popular datasets and demonstrate that XM-SfM dominates or
compares favorably with existing SfM pipelines in terms of
reconstruction quality while being faster, more scalable, and
initialization-free, all thanks to convex optimization.

In summary, our contributions are:
• designing an empirically tight convex SDP relaxation for

the scaled bundle adjustment problem (3);
• solving the convex SDP at extreme scales using BM

factorization paired with a trust-region Riemannian op-
timizer directly implemented in C++/CUDA, i.e., XM;

• creating a full SfM pipeline called XM-SfM that “builds
Rome with convex optimization”.

Paper organization. We derive the QCQP formulation
for (3) and design the SDP relaxation in §II. We present BM
factorization and the CUDA-based trust-region Riemannian
optimizer in §III. We describe the XM-SfM pipeline in §IV and
present experimental results in §V. We conclude in §VI.

II. QCQP AND CONVEX SDP RELAXATION

In this section, let us focus on solving the SBA problem (3)
to certifiable global optimality. We proceed in two steps. In
§II-A, we simplify the original formulation as a quadratically
constrained quadratic program (QCQP) through a sequence
of mathematical manipulations. In §II-B, we apply Shor’s
semidefinite relaxation to “convexify” the nonconvex QCQP.

Before we get started, we remove the ambuiguity of prob-
lem (3) through anchoring.

Anchoring. Observe that one can choose si → 0, ∀i =
1, . . . , N , t1 = · · · = tN = p1 = · · · = pM = 0,
and the objective value of (3) can be set arbitrarily close
to zero. Additionally, multiplying an arbitary rotation matrix
on Ri, ti, pi does not change the objective of (3), leading to
infinitely many solutions. To resolve these issues, we anchor
the first frame and set R1 = I3, t1 = 0, s1 = 1.

A. QCQP Formulation

We first show that the unconstrained variables in (3), namely
the translations ti and the 3D landmarks pk, can be “marginal-
ized out”, leading to an optimization problem only concerning
the scaling factors and 3D rotations.

Proposition 2 (Scaled-Rotation-Only Formulation). Problem
(3) is equivalent to the following optimization

ρ⋆ = min tr
(
QUTU

)
(4a)

subject to U =
[
I3 s2R2 · · · sNRN

]
(4b)

si > 0, Ri ∈ SO(3), i = 2, · · · , N (4c)

where Q ∈ S3N is a constant and symmetric “data matrix”
whose expression is given in Appendix A-A.

Let U⋆ represent the optimal solution of (4) and let
t = [t1; . . . ; tN ] ∈ R3N be the concatenation of translations,
p = [p1; . . . ; pM ] ∈ R3M be the concatenation of landmark
positions. The optimal translations t⋆ and landmark positions
p⋆ of problem (3) can be recovered from U⋆ as follows:[

t⋆

p⋆

]
= (A⊗ I3)vec (U

⋆) . (5)

where the expression of A can be found in Appendix A-A.

Proof: See Appendix A-A.
Proposition 2 reformulates the SBA problem (3) as a lower-

dimensional problem (4). However, problem (4) is not a QCQP
because the objective function is a degree-four polynomial in
si and Ri. In the next step, we show that it is possible to
combine the “scaled rotation” siRi together as a new variable,
effectively reducing the degree of the polynomial.

Proposition 3 (QCQP Formulation). Define the set of scaled
orthogonal group as

sO(3) = {R̄ ∈ R3×3 | ∃s > 0, R ∈ O(3) s.t. R̄ = sR}. (6)

The set sO(3) can be described by quadratic constraints

R̄ =
[
c1 c2 c3

]
∈ sO(3)⇐⇒{

cT1 c1 = cT2 c2 = cT3 c3

cT1 c2 = cT2 c3 = cT3 c1 = 0.

(7)

Consider the following QCQP

ρ⋆QCQP = min tr
(
QUTU

)
(8a)

subject to U =
[
I3 R̄2 · · · R̄N

]
(8b)

R̄i ∈ sO(3), i = 2, . . . , N. (8c)



and let U⋆ = [I3, R̄
⋆
2, . . . , R̄

⋆
N ] be a global optimizer. If

det R̄⋆
i > 0, i = 2, . . . , N, (9)

then U⋆ is a global minimizer to problem (4).

Proof: See Appendix A-B.
It is clear that

ρ⋆QCQP ≤ ρ⋆ (10)

because from (4) to (8) we have relaxed the SO(3) constraint
to O(3). After solving (8), if there exists some index i such
that det R̄⋆

i < 0, we can extract a feasible solution to (4) by
projecting onto SO(3) after extracting the scaling from R̄⋆

i .

Remark 4 (Bad Local Minimum). Problem (8) is a nonconvex
QCQP. In fact, it is a smooth Riemannian optimization by
identifying sO(3) as a product manifold of the positive man-
ifold and the Orthogonal group. Therefore, one can directly
use, e.g., MANOPT to solve (8) (and also (4)). However, as
we will show in §V on the Mip-Nerf 360 dataset [7], directly
solving (8) can get stuck in bad local minima.

This motivates and necessitates convex relaxation.

B. Convex SDP Relaxation

For any QCQP, there exists a convex relaxation known as
Shor’s semidefinite relaxation [35, Chapter 3]. The basic idea
is fairly simple: by creating a matrix variable X := UTU
that is quadratic in the original variable U , problem (8)
becomes linear in X . The convex relaxation proceeds by using
convex positive semidefinite constraints and linear constraints
to properly enfoce the matrix variable X .

Proposition 5 (SDP Relaxation). The following semidefinite
program (SDP)

ρ⋆SDP = min
X∈S3N

tr (QX) (11a)

subject to X =

 I3 · · · ∗
...

. . .
...

∗ · · · αNI3

 ⪰ 0 (11b)

is a convex relaxation to (8), i.e.,

ρ⋆SDP ≤ ρ⋆QCQP. (12)

Let X⋆ be a global minimizer of (11). If rank (X⋆) = 3, then
X⋆ can be factorized as X⋆ = (Ū⋆)TŪ⋆, and 4

Ū⋆ =
[
R̄⋆

1 R̄⋆
2 · · · R̄⋆

N

]
∈ O(3)× sO(3)N−1. (13)

Define

U⋆ = (R̄⋆
1)

TŪ⋆, (14)

then U⋆ is a global optimizer to (8). In this case, we say the
relaxation is tight or exact.

Proof: See Appendix A-C.
If rank (X⋆) > 3, then we can extract feasible solutions

to (8) by taking the top three eigenvectors of X⋆ and project

4R̄⋆
1 is in O(3) because we restrict the scale of the first frame to be 1.

the corresponding entries to sO(3) and further to scaled
rotations, a step that is typically called rounding. Denote Û as
the rounded solution that is feasible for (4), we can evaluate
the objective of (4) at Û and denote it ρ̂. Combing the chain
of inequalities from (10) and (12), we get

ρ⋆SDP ≤ ρ⋆QCQP ≤ ρ⋆ ≤ ρ̂, (15)

where the last inequality follows from Û is a feasible solution
for the minimization problem (4). Assuming we can solve the
convex SDP, we compute ρ⋆SDP and ρ̂ at both ends of the in-
equality (15), allowing us to evaluate a relative suboptimality:

η =
ρ̂− ρ⋆SDP

1 + |ρ̂|+|ρ⋆SDP|
. (16)

η → 0 certifies global optimaity of the rounded solution Û ,
and tightness of the SDP relaxation.

Summary
From (3) to (4), we first eliminated translations and
landmark positions. From (4) to (8), we formulated
a QCQP by creating the new constraint set sO(3).
From (8) to (11), we applied Shor’s semidefinite
relaxation. This sequence of manipulations and relax-
ations allows us to focus on solving the convex SDP
problem (11) while maintaining the ability to certify
(sub)optimaity of the original nonconvex problem (3),
through the inequalities established in (15).

Remark 6 (Connection to Prior Work). For readers familiar
with SDP relaxations, this section should not be surprising at
all—that is the reason why we kept this section very brief and
only focus on milestone results listed in the propositions. The
closest two works to ours are SE-Sync [30] and SIM-Sync [41],
and the SDP relaxation technique traces back to at least the
work by Carlone et al. [14]. The novelty of our formulation are
twofold: (a) we estimate scaling factors with the motivation
to correct learned depth while SE-Sync estimates rotations
and translations only; (b) we jointly estimate 3D landmarks
and (scaled) camera poses while SIM-Sync does not estimate
3D landmarks. These differences allow us to solve the long-
standing bundle adjustment problem with convex optimization.

We shall focus on how to solve the convex SDP (11).

III. BURER-MONTEIRO FACTORIZATION AND
CUDA-BASED RIEMANNIAN OPTIMIZER

Let us first write the SDP (11) in standard primal form:

min
X∈S3N

tr (QX) (17a)

subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m (17b)
X ⪰ 0 (17c)

where we have rewritten the constraint (11b) as a positive
semidefinite (PSD) constraint (17c) and m = 5N + 1 linear
equality constraints (17b). To see why this reformulation is
true, note that the diagonal 3× 3 blocks of X are either I3 or



scaled I3—the former can be enforced using 6 linear equalities
and the latter can be enforced using 5, summing up to 5N +1
linear equalities. Associated with the primal standard SDP (17)
is the following dual standard SDP:

max
y∈Rm

m∑
i=1

biyi (18a)

subject to Z(y) := Q−
m∑
i=1

yiAi ⪰ 0. (18b)

Since Slater’s condition holds (X = I3N ≻ 0 is feasible
for the primal (17)), we know strong duality holds between
primal (17) and dual (18), i.e., their optimal values are equal
to each other [35].

Scalability. Once the SDP (11) is formulated in standard
forms, it can be solved by off-the-shelf SDP solvers such as
MOSEK [5], provided that the SDP’s scale is not so large. Our
SDP relaxation leads to a matrix variable with size 3N × 3N .
This means that when N is in the order of hundreds, MOSEK
can solve the SDP without any problem. However, when N
is in the order of thousands or tens of thousands, which
is not uncommon in bundle adjustment problems, MOSEK
will become very slow or even runs out of memory (e.g.,
MOSEK becomes unresponsive when N > 2000). Therefore,
we decided to customize a solver for our SDP relaxation.

A. Burer-Monteiro Factorization

The key structure we will leverage is, as stated in Propo-
sition 5, the optimal solution X⋆ has its rank equal to three
when the SDP relaxation is tight. In other words, the effective
dimension of X⋆ is 3× 3N instead of 3N × 3N .

To exploit the low-rank structure, we will leverage the
famous Burer-Monteiro (BM) factorization [13].

Proposition 7 (BM Factorization). For a fixed rank r ≥ 3,
the Burer-Monteiro factorization of (11) and (17) reads:

ρ⋆BM,r = min
R̄i∈Rr×3,i=1,...,N

tr
(
QUTU

)
(19a)

subject to U =
[
R̄1 . . . R̄N

]
(19b)

R̄T
i R̄i =

{
I3 i = 1

αiI3 i ≥ 2
. (19c)

A few comments are in order. First, by factorizing X =
UTU , X ⪰ 0 holds by construction. Second, note that when
r = 3, problem (19) is exactly the same as the original
QCQP (8) (up to the difference in R̄1), and thus is NOT
convex. Third, as long as r ≥ r⋆ where r⋆ is the minimum
rank of all optimal solutions of the SDP (11), the nonconvex
BM factorization has the same global minimum as the convex
SDP (11) [35, 13]. Note that the factor U is a matrix of size
r × 3N , i.e., a flat matrix as shown in Fig. 3 bottom right.

Counterintuitive? The reader might find this confusing. In
§II, we applied a series of techniques to relax a nonconvex
optimization problem into a convex SDP, enabling us to solve
it to global optimality. Surprisingly, the BM factorization
appears to “undo” this effort, pulling us back into nonconvex

optimization. While the low-rank factorization offers a clear
scalability advantage, it remains uncertain whether this benefit
outweights the drawbacks of reintroducing nonconvexity.

Rank “staircase”. The secret ingredient of BM factoriza-
tion to tackle nonconvexity is that we will solve the factorized
problem (19) at increasing ranks, like stepping up a “staircase”
(cf. Fig. 3 bottom right). We will start with the lowest rank
r = 3 and solve problem (19) using local optimization. One
of two cases will happen. (a) The local optimizer is the same
as the global optimizer of the SDP, in which case we can
leverage the dual SDP (18) to certify global optimaity and
declare victory against the SDP. (b) The local optimizer is not
the same as the global optimizer of the SDP, in which case we
can again leverage the dual SDP (18) to “escape” the bad local
minimum via increasing the rank, i.e., going up the staircase.

We formalize this in Algorithm 1 and prove its correctness.
Algorithm 1: Riemannian Staircase

1: Input: the data matrix Q
2: Output: optimal solution U⋆

3: # Initialization
4: Set r = 3, U0

r = [I3, . . . , I3]
5: while True do
6: # Local optimization of (19)
7: U⋆

r = LOCALOPTIMIZER(U0
r )

8: # Compute dual certificate
9: yr, Z(yr)← SOLVE (21)

10: # Certify global optimaity
11: if Z(yr) ⪰ 0 then
12: return Ur

13: # Escape local minimum
14: v ← LEASTEIGENVECTOR(Z(yr))

15: Ur+1 =
[
UT
r αv

]T
with α = 1

16: # Line search
17: while tr

(
QUr+1U

T
r+1

)
≥ tr

(
QUrU

T
r

)
do

18: α = α/2

19: Ur+1 =
[
UT
r αv

]T
20: r ← r + 1, U0

r+1 ← Ur+1

Certify global optimaity. At every iteration of Algorithm 1,
it first computes a local optimizer of the BM factorization
problem (19) in line 7 using an algorithm to be described in
§III-B. Denote the local optimizer as U⋆

r . To check whether
(U⋆

r )
TU⋆

r is the optimal solution to the convex SDP (11), we
need to compute the dual optimality certificate.

Theorem 8 (Dual Optimality Certificate). Let U⋆
r be a locally

optimal solution of (19) and assume the linear independence
constraint qualification (LICQ) holds at U⋆

r , i.e.,

∇U (⟨Ai, (U
⋆
r )

TU⋆
r ⟩ − bi) = 2AiU

⋆
r , i = 1, . . . ,m (20)

are linearly independent. Then, there must exist a unique dual
variable y⋆ such that

Z(y⋆)U⋆
r = 0. (21)

If

Z(y⋆) ⪰ 0, (22)



then U⋆
r is a global optimizer of (19), and (U⋆)TU⋆,y⋆, Z(y⋆)

are optimal for the SDP (17) and its dual (18).

Proof: See [13] or [35].
Theorem 8 provides a simple recipe to certify global opti-

mality by solving the linear system of equations in (21) (recall
Z(y⋆) is linear in y⋆ from (18b)), forming the dual matrix
Z(y⋆), and checking its positive semidefinite-ness.

Escape local minimum. If Z(y⋆) is not PSD, then
(U⋆

r )
TU⋆

r is not optimal for the SDP. In this case, the following
theorem states that the eigenvector of Z(y⋆) corresponding to
the minimum eigenvalue provides a descent direction.

Theorem 9 (Descent Direction). Let U⋆
r be a local minimizer

of problem (19) and y⋆ be the corresponding dual variable.
Suppose Z(y⋆) is not PSD and v is an eigenvector of Z(y⋆)
corresponding to a negative eigenvalue. Then, consider the
BM factorization (19) at rank r + 1. The direction

D =

[
0
vT

]
(23)

is a descent direction at the point

Û =

[
U⋆
r

0

]
. (24)

Proof: See [13] or [35].
Theorem 9 states that if Algorithm 1 gets stuck at rank r, it

can escape the local minimum by increasing the rank. Since
D is a descent direction, we perform line search in lines 18-19
until a point with lower objective value is found.

Global convergence. Algorithm 1 is guaranteed to converge
to the optimal solution of the SDP [35] because in the worst
case r will be increased all the way to 3N—the size of
the SDP matrix variable. Of course, in such cases the BM
factorization does not have any scalability advantage over the
origin SDP. Fortunately, in almost all numerical experiments,
Algorithm 1 terminates when r = 3 or 4, bringing significant
scalability advantage to solving large-scale SDP relaxations.

B. C++/CUDA-based Riemannian Optimization

Everything in Algorithm 1 is clear except line 7 where one
needs to locally optimize the nonconvex BM factorization (19).

Riemannian structure. At first glance, problem (19) looks
like a nonconvex constrained optimization problem. However,
the constraints of (19) indeed define a smooth manifold.

Proposition 10 (BM Riemannian Optimization). The BM
factorization problem (19) is equivalent to the following un-
constrained Riemannian optimization problem

min tr
(
QUTU

)
(25a)

subject to U =
[
R1 s2R2 · · · sNRN

]
(25b)

si ∈Mp, i = 2, . . . , N, (25c)

Ri ∈M(r)
s , i = 1, . . . , N (25d)

where Mp is the positive manifold defined as

Mp := {s | s > 0}, (26)

and M(r)
s is the Stiefel manifold of order r:

M(r)
s = {R ∈ Rr×3 | RTR = I3, }. (27)

Proof: By inspection.
We solve problem (25) using the Riemannian trust-region

algorithm with truncated conjugate gradient (Rtr-tCG). Details
of this algorithm can be found in [1, 11].

C++/CUDA implementation. The Rtr-tCG algorithm is
readily available through the MANOPT optimization pack-
age [12]. However, to boost efficiency and enable fast solution
of the SDP relaxation, we implement the Rtr-tCG algorithm
directly in C++/CUDA.

• Conjugate gradient method. The conjugate gradient
method involves only Hessian-vector products and vector
addition. The Hessian-vector product can be decom-
posed into two components: (a) the Euclidean Hessian-
vector product and (b) the Riemannian projection onto
the tangent space. The first component primarily re-
quires matrix-vector multiplication, which can be effi-
ciently implemented using cuBLAS. The second com-
ponent involves batched small matrix-matrix multiplica-
tions, matrix-matrix inner products, scalar-matrix multi-
plications, all of which are implemented using custom
CUDA kernels. For vector addition, we directly utilize
the cublasDaxpy function from cuBLAS.

• Retraction. The retraction operation aims to map a point
from the tangent space back to the manifold. In our
case, the retraction operation happens both on the positive
manifold and the Stiefel manifold. The retraction on the
positive manifold is a simple custom kernel, while the
retraction on the Stiefel manifold involves QR decompo-
sition. We directly apply Gram-Schmidt process on every
batch of 3 × r matrices, which is implemented using
custom CUDA kernels.

In §V, we show our GPU-based implementation achieves up
to 100 times speedup compared to the CPU-based MANOPT.

Summary
We focused on developing a customized solver ca-
pable of solving large-scale SDP relaxations in (11)
(and (17)). We applied the Burer-Monteiro factoriza-
tion method to exploit low-rankness of the optimal
SDP solutions (cf. problem (19)), and leveraged the
Staircase Algorithm 1 to solve the nonconvex BM
factorization to global optimality. We pointed out the
BM factorization problem is indeed an unconstrained
Riemannian optimization problem (cf. problem (25))
and developed a C++/CUDA-based implementation
that is significantly faster than MANOPT.

Remark 11 (Connection to Prior Work). This is not the first
time BM factorization has been applied in robotics. SE-Sync
pioneered the application of BM factorization for solving the
pose graph optimization problem. Several works [20, 19, 21]
utilized the dual optimality certificate result in Theorem 8 to



develop fast certifiers. Our novelty lies in developing the first
C++/CUDA-based implementation of the Riemannian trust-
region algorithm to push the limitations of BM factorization.

IV. STRUCTURE FROM MOTION WITH XM

In this section, we present our SfM pipeline with XM as the
optimization engine, illsutrated in Fig. 3.

View graph. To construct view graph for an image set, we
first run COLMAP’s feature extractor and exhaustive matcher
to extract 2D correspondences. The feature extractor employs
SIFT [26] for feature detection and description, while the
exhaustive matcher matches every image pairs. After match-
ing, we apply GLOMAP’s track establishment to produce
a four-column file where the first two columns represent
feature point coordinates, the third indicates the image index,
and the fourth corresponds to the 3D landmark indices. For
now, we use the original implementation from COLMAP and
GLOMAP. However, we remark that it is possible to speedup
the processes further using C++ and GPU implementation. We
leave that as a future step.

Depth estimation. We use the depth estimation model
UNIDEPTH [29] to calculate the metric depth of a given
image, and lift the view graph from 2D to 3D. If given the
confidence map, we also use it to update the weight of different
observations. We also tried other depth prediction models and
compare their performance in Appendix B.

Filter from two-view estimation. Using 2D observations,
we estimate the relative pose between two images. Based on
this pose, we filter out 3D landmarks with large Euclidean
distance errors. Specifically, landmarks with distance errors
exceeding three times the median are removed.

XM solver. We then use the lifted 3D measurements and
the view-graph to form a Q matrix as shown in (4). We solve
the SDP problem in (11) using our XM solver. If needed, we
also delete the 10% measurements with largest residuals and
re-run the XM solver. This corresponds to a greedy heuristic
for outlier removal [4] and we call it XM2 (runing twice).

CERES refinement. Usually the depth predictions are quite
noisy, leading to inaccurate estimations of XM. We therefore
also feed the estimated poses and landmarks to CERES as a
warmstart to solve the original bundle adjustment problem (1).
As we will show, the solution of XM always provide a strong
warmstart for CERES to quickly optimize (1).

V. EXPERIMENTS

We evaluate the XM solver and the XM-SfM pipeline on
diverse datasets. XM is benchmarked against the leading bundle
adjustment solver CERES and XM-SfM is compared against the
widely adopted SfM pipelines COLMAP and GLOMAP.

Experiments run on a Lambda Vector workstation with 64-
core AMDő Ryzen Threadripper Pro 5975WX CPUs and dual
NVIDIAő RTX 6000 GPUs, using CUDA 12.4 and Python
3.11.10. All dependencies are carefully set up to leverage
multi-CPU and GPU acceleration.

A. BAL Dataset

We first evaluate on the Bundle Adjustment in the Large
(BAL) dataset [2]. This dataset contains reconstruction results
from Flickr photographs using Bundler. On BAL we focus on
XM solver performance rather than the full XM-SfM pipeline.

Setup and baselines. For input, we use 2D observations
for CERES and 3D observations for XM. The 2D keypoint
measurements come directly from the BAL dataset, while
the 3D keypoint measurements are lifted by appending z-
coordinates to the 2D measurements. Though accurate, these
3D observations incorporate slight noise, making them a re-
fined yet imperfect ground truth. To showcase XM’s efficiency
in solving the SDP relaxation of the SBA problem (3), we also
evaluate MANOPT using the same input as XM.

Metrics. We evaluate performance based on the runtime and
the median of Absolute Trajectory Error (ATE) and Relative
Pose Error (RPE). Additionally, we report the suboptimality
and the minimum eigenvalue of the Z(y) matrix in (18) to
demonstrate that XM achieves global optimality. Note that the
minimum eigenvalue of Z(y) has been used as a metric for
global optimaity in previous works as well [14]. Runtime
is split into preprocessing time and solver time. The former
primarily involves constructing the Q matrix in (4), which is
implemented in Python, while the latter corresponds to the
GPU solver. We separate preprocessing time and solver time
because there are still ways to further reduce the preprocessing
time (while the solver time, to the best of our understanding,
has been pushed to the limit). For example, as building the
Q matrix requires large dense matrix multiplications, a GPU
implementation is expected to accelerate this step by 10 to
100 times. However, we leave this as a future step.

Results. Table I summarizes the comparison between XM
and other methods. We tested several versions of CERES.
“CERES” indicates running CERES without any initialization.
“CERES-GT” indicates starting CERES at the groundtruth
estimation. “CERES-GT-0.01” means adding noise to the
groundtruth with standard deviation 0.01. We make several
observations. (a) Without good initialization, CERES does not
work, as shown by the failures of CERES and CERES-GT-0.1.
(b) XM is up to 100 times faster than MANOPT, showing the
superior efficiency of our GPU implementation. Notably, XM’s
solver time is below a second for N in the order of hundreds,
and XM scales to N > 10, 000 camera frames.

Table II presents the suboptimality gap and minium eigen-
value of XM. As we can see, except the largest instance with
N = 10155 camera frames, XM solved all the other instances
to certifiale global optimality. The reason why XM did not
solve the largest instance to global optimality is because we
restricted its runtime to one hour (XM did achieve global
optimality if allowed four hours of runtime).

Fig. 4 visualizes the 3D reconstructions. Since real images
are not available in BAL, all 3D landmarks have the same
purple color. The reconstructed cameras are shown in red.
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Fig. 3: XM-SfM: structure from motion pipeline with XM.

TABLE I: Results on the BAL dataset. We report the ATE, RPE and running time for CERES, MANOPT, and our proposed
XM solver. The evaluation is conducted on four BAL datasets with varying numbers of frames to demonstrate that our method
is both fast and accurate across datasets of different scales (e.g., BAL-10155 indicates there are 10155 camera frames to be
reconstructed). CERES fails at a bad local minimum without a good initial guess, while MANOPT performs significantly slower
and even fails to solve within ten hours on the largest dataset.

Datasets BAL-93 (6033 landmarks) BAL-392 (13902 landmarks) BAL-1934 (67594 landmarks) BAL-10155 (33782 landmarks)

Metrics Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

CERES 4.21
0.06

0.18
19.47◦

0.29
15.46◦

23.31
0.37

0.43
23.49◦

0.7
21.80◦

227.15
3.85

0.32
177.20◦

0.63
31.50◦

50.97
2.41

0.71
84.29◦

1.25
80.19◦

CERES-GT 0.36
0.06

0.0
0.0◦

0.01
0.0◦

3.59
0.36

0.01
0.0◦

0.01
0.0◦

16.39
3.78

0.01
0.0◦

0.01
0.0◦

21.49
2.4

0.0
0.0◦

0.0
0.0◦

CERES-GT-0.01 11.61
0.06

0.01
1.72◦

0.02
2.87◦

25.74
0.38

0.04
4.58◦

0.07
5.73◦

427.79
3.73

0.01
0.0◦

0.01
0.0◦

380.4
2.45

0.04
2.87◦

0.07
5.15◦

CERES-GT-0.1 9.24
0.06

0.56
40.29◦

1.01
34.38◦

21.34
0.37

0.37
22.37◦

0.73
30.38◦

70.43
3.76

0.82
0.0◦

1.3
9.17◦

35.06
2.38

0.33
20.57◦

0.67
37.78◦

MANOPT 0.56
0.94

0.0
0.0◦

0.0
0.0◦

21.43
2.7

0.0
0.0◦

0.0
0.0◦

236.46
69.15

0.0
0.0◦

0.01
0.0◦

∗∗
336.76

∗∗
∗∗

∗∗
∗∗

XM 0.07
0.94

0.0
0.0◦

0.0
0.0◦

0.55
2.7

0.0
0.0◦

0.0
0.0◦

2.09
69.15

0.0
0.0◦

0.01
0.0◦

4322.77
336.76

0.02
0.73◦

0.02
0.5◦

TABLE II: Results on the BAL dataset (suboptimility and min-
eig). We report the suboptimility gap and minimal eigen value
of Z matrix in (18) for our proposed XM method.

Datasets BAL-93 BAL-392 BAL-1934 BAL-10155

Suboptimility-Gap 4.8× 10−4 4.2× 10−3 1.0× 10−2 6.2× 10−1

Min-eig −8.8× 10−5 1.3× 10−7 1.2× 10−6 −2.1× 101

Takeaway
• The SBA problem (3) is easier to solve than the
BA problem (1)—we can design efficient convex relax-
ations. While CERES needs good initialization for solv-
ing (1), XM requires no initializations for solving (3).
• With GT depth and outlier-free matchings, solving
SBA with XM produces the same result as solving BA
with CERES or COLMAP.
• XM is fast and scalable.

B. Replica Dataset

We then test on the Replica dataset [42, 34, 32], which
contains synthetic images of different virtual scenes.

Setup, baselines, metrics. We use the groundtruth depth
map but employ the full XM-SfM pipeline. We compare XM-SfM,
both with and without two-view filtering, against COLMAP
and GLOMAP. The evaluation metrics remain the same. For
runtime analysis, we categorize all components preceding our
XM solver—including Matching, Indexing, Depth Estimation,
Filtering, and Matrix Construction—as preprocessing time.
The indexing, filtering and matrix construction components
can be further accelerated in CUDA. Similarly, for GLOMAP
and COLMAP, all steps prior to global positioning and bundle
adjustment are counted as preprocessing time.

Results. Results are presented in Table III and Table IV.
Each Replica dataset contains 2000 frames, but for a diverse



Fig. 4: Visualization of BAL datasets. Top: Our XM solver. Middle: CERES-GT-0.01. Bottom: CERES-GT-0.1. Both our XM
solver and CERES-GT-0.01 accurately recover the ground truth camera poses and landmarks, whereas CERES-GT-0.1 fails.

Fig. 5: Visualization of Replica datasets. Top: Our XM solver. Middle: GLOMAP. Bottom: COLMAP. All methods achieve
high accuracy, producing nearly identical reconstruction results. GLOMAP sometime produce outliers (see column 2 and 3).

comparison across different dataset sizes, we sample the
first 100 frames from each dataset as a separate experiment.
“Room0-100” refers to the first 100 frames, while “Room0-
2000” represents the full dataset.

XM consistently outperforms baselines by 100 to 1000 times
in solver speed, solving almost all 2000-frame datasets within
10 seconds. At the same time, XM maintains high accuracy,
achieving a median translation error of just 1%. In practice,
a 0.1% and 1% translation error yield nearly identical recon-
struction quality, as illustrated in Fig. 5.

Additionally, we provide a runtime breakdown for XM in
Appendix C. The solver time is negligible, appearing as only
a thin bar in the chart. Matching, indexing, and filtering are the

most time-consuming components, with the latter two planned
for CUDA implementation as future work.

Takeaway
• With ground truth depth and COLMAP matchings,
minor filter refinement achieves results comparable to
COLMAP and GLOMAP.
• XM remains highly efficient and scalable.

C. Mip-Nerf and Zip-Nerf Dataset

Mip-Nerf and Zip-Nerf [7, 8] are real-world image datasets
around a single object. We evaluate learned depth and down-



Fig. 6: Visualization of Mip-Nerf datasets. Top: COLMAP. Bottom: Our XM solver. 3D-gaussian renderings are the same.

Fig. 7: Visualization of IMC2023 datasets. Top: Our XM solver. Bottom: GLOMAP.

Fig. 8: Visualization of TUM datasets using our XM solver.

Fig. 9: Visualization of C3VD medical datasets. Top: With ground truth depth. Bottom: With learned depth.



TABLE III: Results on the Replica dataset. COLMAP, while highly stable, is extramely slow, taking over 20 hours for datasets
with 2000 frames. GLOMAP improves speed but still requires several hours for the solving stage and occasionally produces
outliers. In comparison, our solver achieves similar accuracy in just 10 seconds for the same dataset size.

Datasets XM2 FILTER + XM2 GLOMAP COLMAP

Metrics Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

Room0-100 0.12
10.52

0.005
0.323◦

0.007
0.083◦

0.12
13.71

0.005
1.025◦

0.008
0.077◦

39.57
6.4

0.003
0.469◦

0.004
0.05◦

100.61
1.71

0.003
0.582◦

0.004
0.038◦

Room0-2000 8.5
1142.74

0.012
1.38◦

0.017
0.44◦

16.26
1868.24

0.003
0.379◦

0.005
0.242◦

5371.98
957.31

0.001
0.136◦

0.001
0.043◦

74827.56
120.02

0.001
0.078◦

0.001
0.068◦

Room1-100 0.14
13.08

0.009
1.847◦

0.013
0.16◦

0.14
16.19

0.01
2.056◦

0.014
0.176◦

53.95
8.75

0.014
1.409◦

0.019
0.122◦

144.39
1.99

0.06
10.765◦

0.072
0.726◦

Room1-2000 7.37
1156.6

0.102
10.57◦

0.135
8.971◦

6.18
1651.12

0.005
0.428◦

0.008
0.418◦

3806.94
911.0

0.001
0.166◦

0.002
0.066◦

64912.5
379.45

0.002
0.156◦

0.002
0.06◦

Office0-100 0.15
12.75

0.04
3.554◦

0.051
0.128◦

0.12
16.53

0.024
3.385◦

0.033
0.127◦

27.99
8.67

0.015
0.559◦

0.019
0.04◦

49.02
3.58

0.019
1.53◦

0.028
0.067◦

Office0-2000 4.6
730.15

0.249
9.423◦

0.322
12.713◦

5.61
1181.42

0.061
3.353◦

0.079
3.294◦

3241.77
613.85

0.024
2.822◦

0.034
0.058◦

35682.24
168.36

0.003
0.184◦

0.004
0.06◦

Office1-100 0.13
8.13

0.022
2.708◦

0.03
0.2◦

0.15
10.81

0.015
2.032◦

0.023
0.138◦

18.7
4.37

0.006
1.423◦

0.008
0.021◦

61.5
1.36

0.014
3.366◦

0.021
0.039◦

Office1-2000 23.1
759.43

0.049
2.997◦

0.064
2.623◦

230.25
1270.29

0.038
5.08◦

0.052
1.643◦

2838.54
666.34

0.001
0.037◦

0.001
0.045◦

25512.84
140.53

0.078
13.882◦

0.112
0.157◦

TABLE IV: Results on the Replica dataset (min-eig and sub-
optimility). All the min-eig and suboptimality-gap are samll,
which means our solver find the global minimum.

Method XM2 FILTER + XM2

Metric Min-eig Suboptimility-gap Min-eig Suboptimility-gap

Room0-100 1.1× 10−5 1.9× 10−6 1.1× 10−5 7.4× 10−8

Room0-2000 3.5× 10−8 2.2× 10−5 −6.3× 10−8 5.9× 10−6

Room1-100 2.6× 10−6 7.9× 10−4 1.3× 10−5 1.8× 10−6

Room1-2000 5.8× 10−8 2.2× 10−4 −4.6× 10−7 4.5× 10−6

office0-100 −8.0× 10−7 1.4× 10−7 −1.0× 10−6 1.1× 10−7

office0-2000 4.7× 10−7 5.2× 10−4 −1.5× 10−6 6.7× 10−6

office1-100 −8.0× 10−7 1.0× 10−7 8.5× 10−7 2.4× 10−8

office1-2000 −4.2× 10−8 2.3× 10−5 6.8× 10−8 3.8× 10−4

Fig. 10: Illustration of local minimum on the Mip-Nerf dataset.
Left: Solution of (19) with r = 3, where the solver gets stuck
in a poor local minimum. Right: Solution after increasing the
rank to 4, which successfully escapes the local minimum.

stream novel view synthesis tasks on these datasets.
Setup, baselines, metrics. As these datasets are generated

by COLMAP, we use its camera poses as ground truth to
benchmark XM against COLMAP and GLOMAP. To address
inaccuracies in learned depth, we apply CERES refinement,
incorporating its runtime into the solver time, denoted as “XM

TABLE V: Results on the Mip-Nerf and Zip-Nerf datasets.
COLMAP is very slow, while both XM and GLOMAP achieve
comparable accuracy. However, XM is significantly faster.

Method Metrics
Datasets

-187865
Kitchen-279

-106858
Garden-185

-41866
Bicycle-194

-111783
Room-311

-416665
Alameda-1724

+ CERES
FILTER + XM2

(XM + CERES)
Solver Time

19.19
0.8 +

3.98
0.65 +

22.47
0.58 +

24.35
1.01 +

218.13
62.0 +

Processing Time 229.82 174.57 145.75 223.44 3348.46

ATE-T 0.018 0.002 0.019 0.002 0.009
ATE-R 0.154◦ 0.021◦ 0.229◦ 0.06◦ 0.317◦

RPE-T 0.027 0.003 0.028 0.002 0.014
RPE-R 0.201◦ 0.025◦ 0.219◦ 0.084◦ 0.493◦

GLOMAP

Solver Time 363.22 193.86 77.76 269.39 1169.83

Processing Time 124.23 90.7 79.84 96.26 2631.69

ATE-T 0.016 0.013 0.039 0.003 0.001
ATE-R 0.107◦ 0.061◦ 0.51◦ 0.083◦ 0.074◦

RPE-T 0.023 0.02 0.056 0.003 0.002
RPE-R 0.135◦ 0.067◦ 0.114◦ 0.029◦ 0.053◦

COLMAP

Solver Time 1422.96 486.84 273.84 958.5 79278.36

Processing Time 97.26 78.1 75.16 62.47 2494.29

ATE-T 0.0 0.0 0.0 0.0 0.0
ATE-R 0.0◦ 0.0◦ 0.0◦ 0.0◦ 0.0◦

RPE-T 0.0 0.0 0.0 0.0 0.0
RPE-R 0.0◦ 0.0◦ 0.0◦ 0.0◦ 0.0◦

TABLE VI: Results on the Mip-Nerf and Zip-Nerf datasets
(min-eig and suboptimility). All datasets are solved to global
minimum.

Metric kitchen garden bicycle room alameda

Min-eig 1.1× 10−10 −3.6× 10−9 4.8× 10−8 −4.6× 10−7 −3.8× 10−7

Suboptimility-gap 8.9× 10−8 8.8× 10−9 2.5× 10−5 4.5× 10−6 8.1× 10−2

+ CERES.” All other evaluation metrics remain unchanged.
Results. Results are presented in Table V, with suboptimal-

ity detailed in Table VI. While adding CERES increases solver
time, the overall runtime remains 10 to 100 times faster than
the baselines. On the garden and room datasets, we achieve a
0.2% error, demonstrating the same accuracy as the baselines,
while on others, the error may be slightly higher. However, as
shown in Fig. 6, this has no noticeable impact on downstream
3D Gaussian Splatting tasks [25].

A runtime breakdown for XM is provided in Appendix C.



TABLE VII: Results on the IMC datasets. XM-SfM achieves
comparable accuracy while being much more scalable.

Datasets FILTER + XM2 + CERES GLOMAP

Metrics Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

-203244
Rome-2063

19.17+ 300.16
4877.89

0.011
0.96◦

0.018
1.226◦

9813.04
3459.04

0.003
0.09◦

0.005
0.069◦

-62561
Gate-1363

2.92+ 99.66
1349.74

0.038
1.329◦

0.089
2.022◦

2263.79
712.56

0.018
0.41◦

0.047
0.19◦

-78026
Temple-904

1.34+ 93.5
1026.65

0.011
0.817◦

0.02
0.437◦

1560.86
600.4

0.012
0.276◦

0.03
0.216◦

-314422
Paris-3765

22.17+ 304.49
16645.16

0.008
0.473◦

0.017
0.561◦

74560.1
10598.8

0.009
0.117◦

0.017
0.087◦

TABLE VIII: Results on the TUM. Accuracy is a bit higher
because of low-resolution images.

Metrics Solver Time / Processing Time ATE-T / ATE-R RPE-T / RPE-R

fr1/xyz-798-26078 0.63 + 9.69 / 498.49 0.045 / 6.567◦ 0.068 / 1.134◦

fr1/rpy-723-26071 0.88 + 18.8 / 329.84 0.023 / 15.568◦ 0.038 / 2.495◦

fr1/desk-613-38765 0.63 + 7.95 / 201.17 0.024 / 3.214◦ 0.041 / 2.277◦

fr1/room-1362-86634 10.17 + 182.29 / 464.4 0.101 / 13.213◦ 0.144 / 5.791◦

Matching and indexing remain slow, while depth estimation
now takes even longer. This is due to (a) foundation models
requiring much time for estimation and (b) depth estimation
runtime scales linearly with the number of frames, whereas
Mip-Nerf datasets are relatively small.

The need for convex relaxation. In Fig. 10, we demonstrate
that directly solving (19) with rank 3 (equivalently (8)) can
lead to a local minimum. Specifically, the solver terminates
with a minimal eigenvalue of Z(y) at −6.2 × 102, resulting
in a messy reconstruction. However, by increasing the rank
to 4, the solver escapes the local minimum and achieves the
global minimum in rank 3, indicating that while the relaxation
remains tight, the Burer-Monteiro method requires a higher
rank to find the global minimum.

Takeaway
• With CERES refinement to mitigate depth errors,
XM achieves nearly the same accuracy as COLMAP
and GLOMAP. Moreover, this has no impact on down-
stream novel view synthesis tasks.
• XM maintains a significant speed advantage, even
with learned depth and real-world data.
• BM factorization and the Riemannian staircase ef-
fectively escape local minimum.

D. IMC, TUM and C3VD Datasets

Followed by Mip-Nerf, we step to the IMC PhotoTourism
dataset [16], TUM dataset [33], and C3VD medical dataset
[9]. These datasets are quite challenging because of varying
environments and low-quality images.

Setup, baselines, metrics. We only compare our XM solver
against GLOMAP on IMC datasets. In these three datasets we
add both the filter part and XM2. In C3VD we use the ground
truth depth map and the learned depth from a medical-specific

TABLE IX: Results on the C3VD. Ground truth depth is
significantly more accurate than learned depth, while they both
fail on the last dataset because of dark environment.

Datasets FILTER + XM2 + GT-DEPTH FILTER + XM2

Metrics Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

medical5 0.31
55.45

0.009
3.284◦

0.015
0.647◦

0.34
30.19

0.109
11.64◦

0.169
3.191◦

medical6 0.46
171.35

0.014
4.102◦

0.019
0.851◦

0.47
166.19

0.262
116.79◦

0.352
4.729◦

medical7 0.81
261.58

0.01
3.69◦

0.013
1.231◦

0.89
250.48

0.047
131.686◦

0.062
3.564◦

medical8 0.23
56.84

0.72
66.107◦

1.196
0.062◦

0.22
38.25

0.452
159.909◦

0.704
0.091◦

depth prediction model [28].
Results. The results are presented in Table VII, Table VIII,

and Table IX. The IMC datasets consist of large image collec-
tions capturing some famous landmarks. As a result, GLOMAP
requires an extremely long runtime, exceeding 20 hours for the
largest dataset. Our accuracy is comparable to GLOMAP, with
visualizations provided in Fig. 7. The TUM and C3VD datasets
produce high-quality reconstructions, though accuracy is af-
fected by the complexity of the environment and insufficient
lighting. Visualizations of these reconstructions are provided
in Fig. 8 and Fig. 9.

Takeaway
XM remains efficient and scalable across diverse
datasets, achieving results comparable to GLOMAP
while being significantly faster.

VI. CONCLUSION

We proposed XM, a scalable and initialization-free solver
for global bundle adjustment, leveraging learned depth and
convex optimization. By relaxing scaled bundle adjustment as
a convex SDP and solving it efficiently with Burer-Monteiro
factorization and a CUDA-based trust-region Riemannian op-
timizer, XM achieved certifiable global optimality at extreme
scales. Integrated into the XM-SfM pipeline, it maintains the
accuracy of existing SfM methods while being significantly
faster and more scalable.

Limitation and future work. First, while our XM solver
outperforms baselines in speed, it can be sensitive to noise
and outliers. Future work includes refining the filtering process
and developing better methods to handle outliers. Second,
our GPU solver is built on the cuBLAS dense matrix-vector
multiplication library, whereas SLAM camera sequences often
have sparse patterns. Extending the XM solver to support sparse
matrix-vector multiplications would enhance its applicability
to SLAM. Third, our XM-SfM pipline still has components that
potentially can be accelerate 100 to 1000 times through CUDA
implementation, e.g., filtering and matrix construction.
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APPENDIX A
PROOFS

A. Proof of Proposition 2

Proof: We begin by expressing the objective function in
(3) in its vectorized form:∑

(i,k)∈E

wik ∥Ri(siũik) + ti − pk∥2

=
∑

(i,k)∈E

wik

∥∥(ũT
ik ⊗ I3)vec (siRi) + ti − pk

∥∥2
Here, wik represents the weight assigned to each term.

Let ei ∈ RN be a vector of zeros except for the i-th entry,
which is set to 1, and similarly, let ēk ∈ RM be a vector of
zeros except for the k-th entry, which is set to 1. Furthermore,
define the following concatenated vectors: t = [t1, . . . , tN ] ∈
R3N for translations, p = [p1, . . . , pM ] ∈ R3M for landmark
positions, r = [vec (s1R1) ; . . . ; vec (sNRN )] ∈ R9N for
vectorized scaled rotations.

With these definitions, we simplify the objective function
as L(t, p, r).∑
(i,k)∈E

wik||((eTi ⊗ ũi,k)⊗ I3)r + (eTi ⊗ I3)t− (ēTk ⊗ I3)p||2

= rT (Q1 ⊗ I3) r + tT (Q2 ⊗ I3) t+ pT (Q3 ⊗ I3) p+

2rT (V1 ⊗ I3) t− 2rT (V2 ⊗ I3) p− 2tT (V3 ⊗ I3) p

where Q1, Q2, Q3, V1, V2, V3 are as follows

Q1 =
∑

(i,k)∈E

wik(ei ⊗ ũi,k)(e
T
i ⊗ pTi,k) ∈ R3N×3N , (28)

Q2 =
∑

(i,k)∈E

wik(eie
T
i ) ∈ RN×N , (29)

Q3 =
∑

(i,k)∈E

wik(ēkē
T
k ) ∈ RM×M , (30)

V1 =
∑

(i,k)∈E

wik(ei ⊗ ũi,k)e
T
i ∈ R3N×N , (31)

V2 =
∑

(i,k)∈E

wik(ei ⊗ ũi,k)ē
T
k ∈ R3N×M , (32)

V3 =
∑

(i,k)∈E

wikeiē
T
k ∈ RN×M , (33)

We now solve out t and p by taking the gradient of L(t, p, r)

w.r.t. t and p respectively. Let y =

[
t
p

]
. We can represent

L(t, p, r) using y, r as follows:

L(y, r) = rT (Q1 ⊗ I3) r − 2rT (Vtp ⊗ I3) y

+yT (Qtp ⊗ I3) y (34)

where Qtp, Vtp are as follows:

Qtp =

[
Q2 −V3

−V T
3 Q3

]
∈ R(N+M)×(N+M) (35)

Vtp =
[
−V1 V2

]
∈ R3N×(N+M). (36)

set ∇yL(y, r) = 0 we obtain

(Qtp ⊗ I3)y = (Vtp ⊗ I3)
Tr. (37)

Let G denote the view-graph. Next we prove Qtp can be
represented as:

Qtp = L(G) (38)

where L(G) is the Laplacian of G:

Lemma 12. Qtp is the Laplacian of G.
proof: Note that G is a weighted undirected graph. Calling
δ(q) for the set of edges incident to a vertex q, and we = wqp

for e = (q, p), the Laplacian of G is:

L(G)qp =


∑

e∈δ(q) we if q = p,

−wqp if (q, p) ∈ E ,
0 if (i, j) /∈ E .

(39)

On the other hand, by expanding (35) and compare it with
(39), we finish the proof.

Calling ȳ = [t2; . . . ; tN ; p1; . . . ; pN+M ] ∈ R3(N+M)−3 and
Q̄tp = [c2; . . . ; cN+M ] ∈ R(N+M)×(N+M−1) where ci is the
i-th column of Qtp. We prove when fix s1 = 1, R1 = I3,
t1 = 0, y has an unique solution:

(Q̄tp ⊗ I3)ȳ = −(Vtp ⊗ I3)
Tr (40)

Since rank (L(G)) = N + M − 1 and
∑

i=1,..,N ci = 0N ,
then span(c1, ..., cn) = span(c2, ..., cn) and rank

(
Q̄tp

)
=

N + M − 1 which implies that Q̄tp has full column rank.
Hence, by taking inverse and rearrange, we obtain

ȳ =
(
Ā⊗ I3

)
r (41)

where

Ā = −(Q̄T
tpQ̄tp)

−1Q̄T
tpV

T
tp (42)

Together with t1 = 0,

y = (A⊗ I3) r (43)

with

A =

[
01×3N

−(Q̄T
tpQ̄tp)

−1Q̄T
tpV

T
tp

]
∈ R(N+M)×3N (44)

Now we have a closed form solution of y. Plug in the solution
of y into (34), we obtain:

L(r) = rT
((
ATQtpA+ VtpA+ATV T

tp +Q1

)
⊗ I3

)
r

Note that

r = [vec (s1R1) ; . . . ; vec (sNRN )] = vec (U)

Then L(r) is equivalent to

vec (U)
T ((

ATQtpA+ VtpA+ATV T
tp +Q1

)
⊗ I3

)
vec (U)

Rewrite this in a more compact matricized form gives:

ρ⋆ = min
R

tr
(
QUTU

)
(45)

Q := ATQtpA+ VtpA+ATV T
tp +Q1 ∈ S3N (46)

concluding the proof.



TABLE X: Results of different Depth Estimation Model on the Mip-Nerf datasets.

Method Unidepth Depth-pro DepthAnything-v2 Metric3D-v2

Metrics Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

Solver Time
Processing Time

ATE-T
ATE-R

RPE-T
RPE-R

-187865
Kitchen-279

0.8+ 19.19
229.82

0.018
0.154◦

0.027
0.201◦

1.13 + 21.54
436.19

0.006
0.051◦

0.008
0.062◦

0.9 + 29.52
224.25

0.053
0.384◦

0.072
0.478◦

1.66 + 107.85
216.0

0.064
0.621◦

0.099
0.785◦

-106858
Garden-185

0.65 + 3.98
174.57

0.002
0.021◦

0.003
0.025◦

0.54 + 16.96
322.73

0.007
0.061◦

0.01
0.035◦

0.61+ 3.82
179.88

0.002
0.02◦

0.003
0.025◦

1.01 + 21.74
197.72

0.007
0.059◦

0.009
0.035◦

-41866
Bicycle-194

0.58 + 22.47
145.75

0.019
0.229◦

0.028
0.219◦

0.57 + 11.61
299.62

0.003
0.05◦

0.006
0.039◦

0.53+ 3.44
152.37

0.003
0.034◦

0.004
0.035◦

1.11 + 7.0
168.63

1.123
19.257◦

1.466
7.533◦

-111783
Room-311

1.01+ 24.35
223.44

0.002
0.06◦

0.002
0.084◦

1.18 + 33.49
429.43

0.001
0.053◦

0.002
0.06◦

0.99 + 37.35
190.9

0.002
0.067◦

0.002
0.095◦

1.08 + 86.68
180.55

0.052
2.54◦

0.083
1.584◦

B. Proof of Proposition Proposition 3

Proof: We show that under (9), if U⋆ is a global optimizer
of (8), then it is also a global optimizer of (4).

First, note that (8) is a relaxation of (4), since O(3) ⊆
SO(3). Thus, we have

tr
(
Q(U⋆)TU⋆

)
= ρ⋆QCQP ≤ ρ⋆. (47)

From (9) and the definition R̄⋆
i = s⋆iR

⋆
i , we obtain

det(R⋆
i ) =

det(R̄⋆
i )

(s⋆i )
3

> 0. (48)

This implies that U⋆ is also a feasible solution to (4). By (47),
U⋆ is therefore the global optimizer of (4).

C. Proof of Proposition Proposition 5

Proof: We first establish that (11) is a relaxation of (8).
Let X = UTU . By definition, we have xTXx = (Ux)TUx ≥
0 for all x ∈ R3N , which implies that X ⪰ 0.

Furthermore, since R̄i ∈ sO(3), it follows that R̄
T

i R̄i =
s2i I3 ≜ αI3. This ensures that the feasible set of (11) is broader
than that of (8), confirming that it is indeed a relaxation.

Next we prove if rank (X⋆) = 3, we can extract the global
minimizer of (8) from X⋆. Let X⋆ = (Ū⋆)TŪ⋆, then Ū⋆ is
rank 3. We can decompose Ū⋆ as

Ū⋆ =
[
R̄⋆

1 R̄⋆
2 . . . R̄⋆

N

]
(49)

Since X is feasible, we have R̄⋆
i R̄

⋆
i = αI3 = s2i I3, which

implies that R̄⋆
i /si ∈ O(3).

Define U⋆ = R̄⋆T
1 Ū⋆, making U⋆ a feasible solution to (8).

Moreover, since

tr
(
Q(U⋆)TU⋆

)
= ρ⋆SDP ≤ ρ⋆QCQP, (50)

it follows that U⋆ is the global minimizer of (8).

APPENDIX B
DEPTH MODELS

We compare the performance of different depth estimation
models on the Mip-Nerf datasets. The models we consider are
Unidepth [29], Depth-pro [10], DepthAnything-V2 [39], and
Metric3D-v2 [40]. We evaluate these models using ATE/RTE
and runtime as detailed in Section V. The results are shown in
Table X.

All four models produce accurate results, demonstrating
the robustness of our XM-SfM pipeline to different depth
models. Unidepth is the fastest, while DepthAnything-V2
and Metric3D-v2 are slightly slower but occasionally more
accurate. Depth-Pro is the slowest yet consistently stable in
accuracy.

APPENDIX C
BREAKDOWN PLOT OF RUN TIME

We present time breakdown plots (Fig. 11, Fig. 12, Fig. 13),
for three different cases. Depth estimation scales linearly with
the number of frames, making it more significant in smaller
datasets. Matching and indexing become dominant in larger
datasets, as exhaustive matching time grows quadratically
with the number of frames. Solver time remains consistently
minimal across all datasets.

APPENDIX D
SCALE REGULARIZATION

Due to inaccuracies in real-world data, the scale of frames
2, . . . , N is often significantly smaller than that of the first
frame5. As a result, the global minimum tends to collapse
all cameras 2, . . . , N into a single point to avoid large errors
in their estimates. To mitigate this, we introduce a scale
regularization term in the objective function of (11).

min
X∈S3N

tr (QX) + λ

N∑
i=2

(X3i,3i − 1)2

subject to ⟨Ai, X⟩ = bi, ∀i ∈ 1, . . . , 5N + 1

X ⪰ 0 (51)

This does not violate our existing theorem; Slaters Condition
and strong duality remain valid, and the optimality condition
remains unchanged. However, the Z(y) matrix is modified to

Z(y) = Q−
5N+1∑
i=1

yiAi + λ∇(
N∑
i=2

(X3i,3i − 1)2) (52)

5which is anchored to 1
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Fig. 11: Breakdown Results on the Replica
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Fig. 13: Breakdown Results on the Mip-
Nerf dataset

To prove this, we first write (51) in the standard form:

min ⟨Q,X⟩+ F (X) (53)
s.t. X ≻ 0 (54)

⟨Ai, X⟩ = bi, ∀i (55)

F (X) is a quadratic term defined by F (X) = λ

N∑
i=2

(X3i,3i−

1)2. This is still a convex problem and the lagrangian is:

L(X, y, Z) =⟨Q,X⟩+ F (X)− (56)∑
i

yi(⟨Ai, X⟩ − bi)− ⟨Z,X⟩ (57)

=⟨Q−
∑
i

yiAi − Z,X⟩+ F (X) +
∑
i

yibi

(58)

The KKT condition is:

Z =Q+∇F (X)−
∑
i

yiAi ≻ 0 (59)

⟨Ai, X⟩ =bi, ∀i (60)
X ≻0 (61)

⟨Z,X⟩ =0 (62)

Note that L is linear in the off-diagonal elements of X
and quadratic in the diagonal elements. To ensure a finite
minimum, we require (∇L)ij = 0 for i ̸= j. For the diagonal
elements, achieving the minimum requires (∇L)ii = 0. Thus,
together, we obtain ∇L = 0, i.e.

Q−
∑
i

yiAi − Z = −∇F (X) (63)

From the definition of F (x) we know X3j,3j =

− (Q−
∑

i yiAi−Z)3j,3j
2λ + 1. So we plug in X then we get the

dual problem:

max
∑
i

biyi −
∑N

j=2(C −
∑

i yiAi − Z)23j,3j

4λ
(64)

+

N∑
j=2

(Q−
∑
i

yiAi − Z)3j,3j (65)

s.t. Z ≻ 0 (66)

(Q−
∑
i

yiAi − Z)ij = 0, i ̸= j (67)

APPENDIX E
SUBOPTIMALITY FOR SDP

In (16), we established suboptimality when (11) is solved
to global optimality. However, in practice, numerical errors
arise, and variations in gradient tolerance settings can lead
to increased suboptimality. Here, we provide a rigorous proof
for computing suboptimality in SDP problems and apply it
directly to the scale regularization problem in (51).

Theorem 13. Given the primal problem (51) we have

ρSDP ≥ ρ⋆SDP ≥ max(0, λmin(Z))tr(X) + ρdual (68)

Proof: for all feasible X we have:

⟨Q,X⟩+ F (X) ≥ ⟨Q−
∑
i

yiAi +∇F (x), X⟩ (69)

+
∑
i

yibi + F (X)− ⟨∇F (X), X⟩︸ ︷︷ ︸
dual value

(70)

= ⟨Z,X⟩+ ρdual (71)
≥ max(0, λmin(Z))tr(X) + ρdual (72)

and we have ρSDP ≥ ρ⋆SDP.
ρSDP and max(0, λmin(Z))tr(X) + ρdual can be directly

evaluated within the algorithm. A small gap between them
indicates that ρSDP is close to ρ⋆SDP, confirming that the
problem has been solved to global optimality. We define this
new suboptimality gap as:

η =
ρ̂−max(0, λmin(Z))tr(X)− ρdual

1 + |ρ̂|+|max(0, λmin(Z))tr(X) + ρdual|
. (73)


